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In this supplement we provide additional details of experiments performed
in the main paper.
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1 AUTO CALIBRATION
We describe each step of our automatic calibration procedure below.

(1) Pattern Projection
A pseudo-random dot pattern is projected onto a surface
visible to all cameras in the system. To ensure visibility in
high ambient light environments, the pattern is projected at
a wavelength of 940nm in the near-infrared spectrum.
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(2) Image Capture
Each IR camera captures two images, one with the dots pro-
jected and one with the projections off.

(3) Dot Centroid Localization and Correspondence
• Dot difference images are computed by subtracting the
background images from the projector-on images and then
blurring with a width 3 Gaussian to reduce noise.

• Dot centroid candidates are identified by local maxima
detection within a sliding 3 × 3 window.

• Sub-pixel refinement of dot centroids is achieved by fitting
a quadratic function to a 5x5 neighborhood around each
peak.

• The strongest 1000 peaks per image are selected for subse-
quent correspondence establishment.

• A coarse camera-to-camera transform is estimated using
the Open3D global registration pipeline using FPFH fea-
tures [Rusu et al. 2009] along with the RANSAC algo-
rithm [Zhou et al. 2018], then refined with the Iterative
Closest Point (ICP) algorithm [Besl and McKay 1992].

• Dot correspondences between cameras are established for
each projector active image set by projecting the 3D points
associated with detected dots from one camera to another
using the coarse transform and finding the nearest corre-
sponding detected dot within a specified threshold (k=2
pixels).

(4) Extrinsic Parameter Estimation
The established dot correspondences are used to refine the
camera-to-camera transform using ICP, aligning the 3D points
associated with corresponding dots across cameras.

(5) Bundle Adjustment Optimization
The initial estimates can be further refined using bundle ad-
justment [Triggs et al. 2000] to minimize the re-projection
error of the corresponding dots in all infra-red camera images
across all units.

(6) Dot Correspondence Refinement (Optional)
Lucas-Kanade optical flow [Lucas and Kanade 1981] is em-
ployed to refine the sub-pixel accuracy of dot correspon-
dences after Step 3.
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Fig. 1. Our testing dataset collects each scene in 3 different lighting
conditions. Our system captures multiple exposures and fuses them using
HDR to help alleviate the challenge of multiple lighting conditions.

(7) Extrinsic Parameter Validation
The calibration procedure can be repeated to validate exist-
ing calibration parameters in a production setting, ensuring
that the difference between the existing and newly estimated
parameters is within a desired tolerance.

2 LIGHTING
In Figure 1, we show that each scene was captured with different
lighting conditions, and that HDR allows us to get comparable
images across these lighting conditions.

3 DPSNET
Figure 6 provides a visual comparison, demonstrating the strong
generalization of our model to DPSNet’s polarization data, despite
being trained solely on synthetic data.

4 CRESTEREO BASELINE
We evaluated the performance of CREStereo [Li et al. 2022], a state-
of-the-art stereo matching model, on our dataset (Table 1) using the
publicly available weights. However, we observed significant chal-
lenges in accurately reconstructing industrial objects and intricate
bin walls. Due to CREStereo’s lack of multi-modal fusion capabil-
ities, we restricted our comparison to RGB-only inputs. Notably,
even with this constraint, our model, trained solely on our syn-
thetic RGB data, surpassed the performance of CREStereo trained
exclusively on RGB. Moreover, as demonstrated in the main paper,
incorporating additional modalities further enhances performance,
underscoring the potential benefits of a multi-modal approach for
3D reconstruction in complex industrial environments.

5 TRAINING DATA CREATION
This section details our synthetic data generation pipeline and po-
larized data augmentations.

5.1 Physically Accurate Data Rendering
As mentioned in the main paper, our P-Stereo network training
relies entirely on synthetic data. Generating physically accurate
polarization signals is challenging, and to our knowledge, Mitsuba

3 is the only physics-based renderer currently capable of it [Jakob
et al. 2022]. Physics-based rendering requires accurate simulation
of all material properties and their spectral dependence, global il-
lumination, and light source properties. Mitsuba 3 can handle all
this and simulate accurate Stokes vectors, which are then converted
into AOLP and DOLP.

5.1.1 Object Placement. We created a dataset of around 1,000 di-
verse CAD models representing various abstract shapes and real
objects. During each scene generation, a random set of CAD mod-
els is sampled, followed by a random selection of one of several
placement strategies: random placement in 3D space, gravity-based
placement, parallel to baseline placement (aligning parts with the
baseline, often making stereo reconstruction more challenging for
parts with long rims or textureless regions). Placement is always
within a working volume of 500 to 5,000 mm. Each part can be
randomly scaled during placement.

5.1.2 Materials. Each part is randomly assigned one of the pre-
defined materials from the Mitsuba 3 library. Materials include di-
electrics (including transparent ones) and various metals. We only
select materials supporting realistic physics-based rendering with
polarization, excluding the principled BSDF and other materials not
directly related to physics properties. Some randomly selected ob-
jects are covered with textures from a library of over 3,000 different
textures.

5.1.3 Lighting. We randomly set point or shaped-based light sources
in the scene. While Mitsuba 3 doesn’t allow directly specifying light
source polarization properties, we randomly generate linear polariz-
ers in front of some light sources to ensure polarized incident light.
Additionally, we randomly place various objects above the cameras
to introduce polarization generated by interreflections. Mitsuba 3
inherently accounts for how interreflections alter light polarization,
enhancing rendering realism. We also randomly set environmental
lighting from a selection of over 1,300 different environment maps.

5.1.4 IR Dots. We generate a semi-random IR dot pattern and use
a projector light source in Mitsuba 3 to project it onto the scene.
Mitsuba 3 accounts for object reflectivity, with more reflective ob-
jects returning little or no IR dot signal, similar to real-life scenarios.
We also ensure virtual IR cameras are shifted against RGB cameras,
mimicking real units.

5.1.5 Polarization. We use the Stokes vector simulated by Mitsuba
to compute AOLP and DOLP aligned with the RGB camera. Cur-
rently, we don’t simulate separate P60 and P120 cameras in this
dataset, but we plan to do so in the future for even closer simula-
tion of stereo units. Material and lighting randomization ensures
sufficiently randomized polarization signals rendered at the camera.

5.2 Polarized Data Augmentation
Our polarized data augmentation strategy aims to simulate the
physical properties of polarization while introducing noise. This
approach is guided by several key observations:
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Experiment Input Data Units Roomlight
FNR, % FPR, %

Spotlight
FNR, % FPR, %

Dark
FNR, % FPR, %

Average
FNR, % FPR, %

CREStereo RGB 1 42.1 1.0 41.8 0.9 43.6 1.1 42.5 1.0
Ours RGB 1 13.2 2.1 13.3 2.1 17.4 3.2 14.6 2.5
Ours (Final) RGB + IR + Polar 2 8.6 1.8 8.1 2.1 9.6 2.1 8.7 2.0

Table 1. Our model trained with our synthetic data outperforms a CREStereo trained on many existing public datasets. This shows that our
dataset is challenging and cannot easily be solved by existing state-of-the-art stereo networks. Furhtermore, our Plenoptic Stereo Architecture shows large
improvements on our dataset, showing the benefit of multiple baselines and multiple modalities.

• AOLP-DOLP Correlation: The quality of the Angle of Lin-
ear Polarization (AOLP) signal is strongly linked to the De-
gree of Linear Polarization (DOLP). Weak DOLP signals often
correspond to unreliable AOLP measurements.

• AOLPVariability: The AOLP, measured in degrees, is highly
sensitive to lighting conditions and viewpoint. Our goal is to
encourage the network to learn the underlying AOLP texture
rather than specific values.

• DOLP-Dependent Noise: The DOLP noise level is signal
dependent with higher DOLP values exhibiting more noise.

To replicate these phenomena, we propose the following data
augmentation pipeline:

(1) Random Blurring: To simulate focus imperfections, we ap-
ply Gaussian blurring to both the AOLP and DOLP images
with a 50% probability.

(2) AOLP Offsets: We introduce independent rotations of up to
30◦ to the AOLP of the left and right cameras. This discour-
ages the model from expecting identical AOLP values across
viewpoints.

(3) AOLP Noise: Gaussian noise is applied independently to the
AOLP image, scaled by the DOLP. This means that when
DOLP is 0, the AOLP receives 180◦ Gaussian noise. For DOLP
values above 0.2, the maximum AOLP noise is capped at 10◦.
We find this approach produces a more realistic noise profile.

(4) AOLP Renormalization: To maintain the AOLP within its
valid range of [0, 𝜋], we apply a modulo operation with 𝜋 .

(5) DOLP Scaling: The DOLP is randomly scaled by up to 30%.
(6) DOLP Noise: Gaussian noise is added to the DOLP, with a

standard deviation equal to 15% of the DOLP value.

Visual examples of synthetic scenes generated using this aug-
mentation pipeline are presented in Figure 5. We also provide the
raw synthetic data for the read in Figure 4. During training we also
perform cropping, scaling, and standard RGB photometric augmen-
tations.

6 COLLISION AVOIDANCE METRIC ABLATION
In the main paper, we employ the Collision Avoidance Metric [Taa-
mazyan et al. 2024] with a collision Z threshold of 10mm. All other
parameters are consistent with [Taamazyan et al. 2024]. Here, we
demonstrate that the choice of Z threshold does not alter ordering
of methods presented in the main paper. Metrics were calculated,
averaged across all scenes, for tolerances ranging from 5mm to
20mm in Figures 2 and 3.
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Fig. 2. FNR for collision Z thresholds from 5mm to 20mm. Our full system
outperforms others across all thresholds.
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Fig. 3. FPR for collision Z thresholds from 5mm to 20mm. All methods
converge to similar performance around 20mm.

In Figure 2, we observe that the advantage of multiple units is
higher at lower collision thresholds. This verifies that adding addi-
tional units improves our triangulation accuracy. We also show that
the FNR curve for our full system (2 units, all modalities) consistently
outperforms other configurations across all thresholds.
In Figure 3, we see the FPR curve for our full system is slightly

higher than others (except RGB), converging towards them at a
20mm threshold. We also find the structured light performance does
not improve significantlywith increase the threshold - likely because
the system is more accurate than 5mm. These findings indicate that
the choice of the Z threshold does not impact the overall claims and
conclusions of the paper.
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Fig. 4. Our Synthetic Training Dataset without data augmentations

Fig. 5. Our Synthetic Training Dataset with photometric data augmentations
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Fig. 6. Visual comparisons of our predictions and that of DPSNet. We see that our system tends to produce more realistic estimates (see last
few rows) even though it was trained only on synthetic data. It even has cleaner edges than the ground truth.
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