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Fig. 1. Our compact unit design enables the simultaneous capture of rich multi-modal data - including RGB, IR, and polarization - enabling
robust and accurate 3D reconstruction. (a) - The plenoptic stereo vision unit’s component layout (see Section 3.1 for details). (b) - A reference photo
captured by a cell phone camera of two challenging scenes: transparent objects on a textured background (row 1) and a metallic deep bin (row 2). (c) - Our
system’s point clouds, which successfully reconstructs the transparent objects and the bin walls. (d) - The baseline point clouds captured by an industrial
structured light 3D sensor, which struggles to reconstruct transparent objects or the bin walls.
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We present a novel multi-camera, multi-modal vision system designed for
industrial robotics applications. The system generates high-quality 3D point
clouds, with a focus on improving the completeness and reducing halluci-
nations for collision avoidance across various geometries, materials, and
lighting conditions. Our system incorporates several key advancements:
(1) a modular and scalable Plenoptic Stereo Vision Unit that captures
high-resolution RGB, polarization, and infrared (IR) data for enhanced scene
understanding; (2) an Auto-Calibration Routine that enables the seam-
less addition and automatic registration of multiple stereo units, expanding
the system’s capabilities; (3) a Deep Fusion Stereo Architecture - a state-
of-the-art deep learning architecture trained fully on synthetic data that
effectively fuses multi-baseline andmulti-modal data for superior reconstruc-
tion accuracy. We demonstrate the impact of each design decision through
rigorous testing, showing improved performance across varying lighting,
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geometry, and material challenges. To benchmark our system, we create an
extensive industrial-robotics inspired dataset featuring sub-millimeter accu-
rate ground truth 3D reconstructions of scenes with challenging elements
such as sunlight, deep bins, transparency, reflective surfaces, and thin objects.
Our system surpasses the performance of state-of-the-art high-resolution
structured light on this dataset. We also demonstrate generalization to non-
robotics polarization datasets. Interactive visualizations and videos are avail-
able at https://www.intrinsic.ai/publications/siggraphasia2024.

CCS Concepts: • Computing methodologies → 3D imaging; Camera
calibration; • Hardware→ Displays and imagers.
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1 INTRODUCTION
Industrial robots operate in demanding environments where reli-
able perception is crucial for safety and success. Consider a scenario
where a vision system incorrectly interprets a thin wire, leading to
a robot collision that damages expensive equipment and disrupts
production – a costly setback. To address these challenges, we must
design vision systems that can handle the complexities of industrial
settings. The goal is to achieve accurate and robust 3D reconstruc-
tion across complex geometries, environments, and materials in
industrial settings for the purposes of robotic manipulation and
collision avoidance.
No vision system currently solves this challenging problem due

to the following complex requirements:
• Geometric Complexity: The system must reconstruct typi-
cal objects in a robotic work cell, which can range from thin
wires that are hard to see through to tall bins that create
occlusions and cause inter-reflections.

• Working Volume: Industrial robots require large clearances
and so the system must be capable of accurate 3D reconstruc-
tions at distances of up to 3m.

• Environment: A system must hold calibration in a factory
that has constant mechanical and thermal perturbations.

• Lighting: The system must continue to work even under
direct sunlight (ex: a workcell directly under a skylights) and
in low-light (ex: lights-out manufacturing), making reliance
on active illumination alone impractical.

• Materials: The system must handle a variety of materials
from diffuse metals to anisotropic and transparent materials.

• Accuracy: The system must be accurate enough for the ro-
bot’s safe trajectory planning by avoiding collisions.

The current industry standard solution is high-resolution gray-
code phase-shift structured light [Su and Zhang 2010; Zhonghe
et al. 2022]. These systems project multiple patterns to establish pre-
cise correspondence between camera and projector pixels, achieving
millimeter-level accuracy at distances of 2-2.5 meters. However, they

excel primarily in ideal conditions with favorable geometry, light-
ing, and materials. In scenarios involving occlusions, anisotropic
materials, or sunlight, these systems may fail to reconstruct objects.

Our system tackles this challenge with a stereo-based deep learn-
ing approach. Unlike structured light, stereo vision doesn’t solely
rely on active illumination, making it more robust to difficult light-
ing and material conditions. However, stereo vision typically lacks
the precision needed for industrial robotics. To achieve the required
accuracy in industrial working volumes, a large baseline between
cameras is necessary. This poses significant challenges in both soft-
ware (finding correspondences across vast disparity ranges) and
hardware (maintaining calibration over large baselines).

To overcome the challenges of large-baseline stereo matching, we
employ a traditional stereo-inspired multi-baseline approach [Oku-
tomi and Kanade 1991], incorporating both small and large baselines
to enhance correspondence quality. However, adding more cameras
exacerbates calibration difficulties. To address this we utilize another
key insight: if cameras could continuously self-calibrate, we could
freely add more units as needed. Therefore, we integrate control-
lable IR dots with an IR stereo pair and develop a novel IR-dot based
auto-calibration system that rivals checkerboard pattern accuracy
without an external target.

Additionally, we incorporate polarization into the stereo pair to
expand the camera’s ability to handle challenging materials and
use high dynamic range (HDR) capture to address difficult lighting
conditions. We tie this together in a state-of-the-art deep plenoptic
stereo architecture (P-Stereo) that combines multiple modalities and
baselines, trained exclusively synthetically to prevent over-fitting.
Our system demonstrates competitive performance with struc-

tured light on ideal objects and superior performance in challenging
lighting, material, and geometry scenarios. In addition, we show gen-
eralization on outdoor polarization datasets whereas our P-Stereo is
trained purely in the synthetic domain, thereby showcasing effective
sim-2-real transfer capabilities.

The rest of our paper is structured as follows. Section 2 describes
the background and the related work. Section 3 describes the hard-
ware design of a single-unit, and the software processing that occurs
on each unit, and auto-calibration of multiple units. Section 4 de-
scribes 3D reconstruction using P-Stereo and the synthetic data
training pipeline. Section 5 describes the results. Finally Section 6
describes future work.

2 BACKGROUND
Metrics for Collision Avoidance. Several established point cloud
evaluation metrics exist, including Chamfer distance [Barrow et al.
1977; Fan et al. 2017], Hausdorff distance [Aspert et al. 2002; Dubuis-
son and Jain 1994], and Completeness and Accuracy [Knapitsch et al.
2017]. However, these metrics do not consider the requirements of
robotics (e.g. missing the rim of a bin in a point cloud is negligible
for completeness and accuracy, but will have serious consequences
for collision avoidance). Therefore we use the Collision Avoidance
Metric (CAM) [Taamazyan et al. 2024]. CAM simulates approximate
robot trajectories and estimates collisions using the predicted point
cloud and compares against estimated collisions using the ground
truth (GT) point cloud. This leads to the metrics we use here:
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False Negative Rate (FNR, %): If the GT detects a collision earlier
in the trajectory than the estimated point cloud, this creates a false
negative collision (i.e. a missed collision). These impact safety as it
can cause damage to the robot and its environment. FNR improve-
ment is usually correlated with an improvement in completeness.
False Positive Rate (FPR, %): If the GT point cloud detects a col-

lision later in the trajectory than the estimated point cloud, this
creates a false positive collision (i.e. a ghost collision). These affect
efficiency, not safety, and are therefore less important. An improve-
ment in FPR is usually correlated with a reduction in hallucinations.
Time-of-Flight. Besides structured light and stereo, time-of-

flight cameras also reconstruct depth. While they do not suffer from
occlusions, they instead suffer from lower spatial resolution, ambient
light and geometric interference. While promising research ideas
exist to improve them [Bamji et al. 2022; Horaud et al. 2016], existing
systems would face many challenges in a factory environment.
Deep Stereo Networks. Deep learning has become the dom-

inant approach for stereo matching since the pioneering work
of [Zbontar and LeCun 2015]. Recent methods can be broadly cate-
gorized into cost volume filtering and iterative refinement.
Cost Volume Filtering: These methods typically employ 3D con-

volutions to regularize the cost volume, as seen in successful ar-
chitectures such as GA-Net [Zhang et al. 2019], GCNET [Kendall
et al. 2017], PSMNet [Chang and Chen 2018], AANet [Xu and Zhang
2020], and others [Duggal et al. 2019; Guo et al. 2019; Mayer et al.
2016; Shen et al. 2021].
Iterative Refinement: This more recent approach achieves state-

of-the-art results by employing recurrent units for learned optimiza-
tion and iterative refinement of the disparity map. This concept,
introduced in RAFT-Stereo [Lipson et al. 2021] as an extension of
the RAFT optical flow method [Teed and Deng 2020], has been
further developed in CREStereo [Li et al. 2022], IGEV-Stereo [Xu
et al. 2023], and DLNR [Zhao et al. 2023]. Our deep plenoptic stereo
method is also based on an iterative refinement approach, extending
CREStereo [Li et al. 2022] and RAFT [Lipson et al. 2021] by adding
support for very large disparities and multi-modal inputs.
Multi-View Stereo. These have also been dominated by deep

learning based approaches recently, with notable approaches such
as MVSNet [Yao et al. 2018], SurfaceNet [Ji et al. 2017], P-MVSNet
[Luo et al. 2019], PatchmatchNet [Wang et al. 2021], IterMVS [Wang
et al. 2022], and others [Gu et al. 2020; Xu and Tao 2020; Yang et al.
2020; Yao et al. 2019]. These methods typically involve cost volume
computation and fusion with respect to a reference camera with all
images of the same modality. Our approach distinguishes itself by
enabling the fusion of images from different modalities. A multi-
baseline fusion method is proposed in TriStereoNet[Shamsafar and
Zell 2021], however, it is fixed with 2 small baselines.
Auto-calibrated camera systemsAutomatic calibration of cam-

era systems [Faugeras et al. 1992] is defined as determining the
transform between two camera coordinate systems without an
explicit calibration target. It has been demonstrated successfully
in SfM [Schönberger and Frahm 2016] and self-driving applica-
tions [Hogan et al. 2023]. There have been some attempts to use it
for stereo calibration [Marko and Kubinger 2018]. However, here
the scale factor was provided by manually measuring the scene with

(1) Multi-Exposure Capture (2) HDR Image Reconstruction

(3) Polarization Image Reconstruction

Fig. 2. Our data capture and processing pipeline. The processing
pipeline (Section 3.2) transforms captured raw data into usable signals
for advanced 3D reconstruction and analysis tasks.

a tape-measure. While prior approaches have experimented with IR
dots [Deetjen and Lentink 2018], these have required multiple shots
with multiple cameras and projectors with a specific scene setup.

Plenoptic Imaging The plenoptic function describes the com-
plete space of light rays within a light field. In this work, we employ
an eight-dimensional representation of this function:

𝐼 (𝑥,𝑦, 𝜃𝑥 , 𝜃𝑦, 𝜌, 𝜙, 𝜆, 𝑡), (1)

Where 𝐼 is the measured intensity of light, 𝑥,𝑦 as spatial reso-
lution, 𝜃𝑥 , 𝜃𝑦 as multiple viewpoints, 𝜌, 𝜙 represent the degree of
linear polarization (DOLP) and angle of linear polarization (AOLP),
𝜆 represents wavelength dependency, and 𝑡 represents the time di-
mension. Our imaging system aims to fully sample this function to
maximize point cloud quality.
Prior research has shown that polarization information can en-

hance performance on tasks involving transparent and highly re-
flective objects, including segmentation [Kalra et al. 2020; Mei et al.
2022], depth estimation and refinement [Ikemura et al. 2024; Kadambi
et al. 2015; Zhu and Smith 2019]. Additionally, deep polarized stereo
and multi-view stereo methods have been explored [Cui et al. 2017;
Fukao et al. 2021; Huang et al. 2023; Tian et al. 2023]. However, these
methods are typically based on physics-based heuristics or trained
on real-world data similar to the test set, limiting their generalizabil-
ity. In contrast, we demonstrate performance improvements using
models trained entirely on synthetic data.

3 PLENOPTIC DATA CAPTURE

3.1 Plenoptic Stereo Vision Unit Hardware
Our hardware contains of the following imaging components as
shown in Figure 1(a):

• Multi-Aperture Polarization: Each side of the stereo pair
contains four 8MP cameras in a square, three RGB, one IR.
Each RGB sensor is behind a polarizing filter rotated at three
different angles: 0𝑜 , 60𝑜 , 120𝑜 . These three allow the capture
of high-resolution polarization images simultaneously.
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• IR Active Stereo: There is a dot projector in the middle of
the camera and two 940nm IR sensors on each side. These
form the active stereo pair used for increasing texture.

• Flash: There is also a visible spectrum flash in the middle of
the camera to illuminate low-lighting conditions.

All of the in-unit intrinsics and extrinsics are calibrated using a
checkerboard pattern and 75 images ahead of time.

3.1.1 Camera Architecture - Motivation. The rationale behind the
hardware architecture comes down to the requirements of needing
to capture linearly polarized images that will enable computation
of the angle and degree of linear polarization (AOLP, DOLP). There
exists significant prior work in exploiting polarization signals for
many computer vision tasks. Ourwork aims to exploit this additional
information in enabling more robust depth computation. Images
captured with a standard imager fitted with a linear polarization
filter show a sinusoidal relationship between the pixel intensity at
a given location and the rotation of the linear polarization filter.
The phase of this sinusoidal pattern encodes the azimuth angle
of the surface normal at that point and the amplitude and offset
encode the zenith angle. To recover the three parameters of this
sinusoidal relationship, we need at least three observations of the
scene captured with a linear polarizing filter at 3 different angles
sufficiently apart from each other in spatial rotation [Atkinson and
Hancock 2006]. Hence, we include three RGB imagers with the
linear polarization filters rotated by 60◦ from each other (i.e. 0◦, 60◦,
and 120◦).

A fourth imager is included to sample the scene in Near-IR spec-
trum at 940 𝑛𝑚. We choose 940nm on account of it’s absence in sun-
light due to absorption by the water vapor in the atmosphere [Prieto-
Blanco et al. 2006]. These four imagers are assembled in a 2x2 array
module. A stereo framework of the array module gives us the final
camera architecture shown in Figure 1. This architecture is cou-
pled with the highest density near-IR pattern at 940𝑛𝑚 to enable
active stereo. All 8 imagers are set with fixed focus lenses and have
standard auto-exposure algorithms when HDR is turned off.

3.1.2 Synchronization. The applications we considered for this ver-
sion of the vision architecture are for static pick and place / assembly
based robotic applications with HDR enabled. This did not require
any necessity for microsecond level synchronization since the ob-
jects that the robot interacted with are static (i.e. not moving). The
frame rates are relatively lowwith HDR (3 to 5 fps). The synchroniza-
tion requirements were sufficient to within a few 10s of milliseconds.
We implemented a USB-based call-and-response mechanism to esti-
mate round-trip time between the camera and the Vision Computer.
The Vision Computer then sets and periodically resets the time for
each camera, ensuring synchronization. Images are captured at the
top of each second and half-second.
In cases where tracking and pose estimation on moving objects

must be supported, it is expected that faster synchronization be-
tween the camera, within a few tens of microseconds, will be nec-
essary. It is anticipated that this can be achieved by transitioning
to an Ethernet-based interface with support for the IEEE 1588 PTP
protocol for sensor synchronization.

3.2 Image Processing
The images captured from the hardware (Figure 1(a)) are processed
(Figure 2(b)) and converted into data usable for 3D reconstruction.

(1) Multi-Exposure Capture: Images are captured from each
of the 8 sensors at 3 separate exposures.

(2) ISPProcessing:Weperform black level correction, vignetting
correction, and demosaicing. We do not perform auto white-
balance nor color correction.

(3) HDR Calculation: HDR image is computed for each sensor.
(4) Polarization Calculation: Using our Plentopic Stereo, a low-

resolution depth map is quickly calculated on a single unit.
This depth map is used to align the polarized RGB cameras
and calculate the angle and degree of linear polarization
through a least squares fit [Kadambi et al. 2015].

(5) Final Output: RGB, AOLP, DOLP, and IR images are output
as shown in Figure 2(b).

3.3 Multi-Unit IR-Dot Auto-Calibration
Stereo-based systems encounter accuracy challenges when measur-
ing distances far exceeding than their baseline, a limitation evident
in our single unit with a 10 cm baseline and 7.9 mm focal length,
leading to notable depth estimation errors at longer ranges. To
address this, we introduce a novel auto-calibration method that
effectively creates a large 1 m virtual baseline by incorporating a
second unit. This approach significantly improves triangulation ac-
curacy. By estimating the transforms between units using infrared
dot correspondences, we eliminate the need for calibration targets.
Our markerless solution not only enables automated in-situ cal-

ibration and drift detection during production but also enhances
the overall system accuracy without disrupting the workflow. Tradi-
tional marker-based methods often prove unreliable in demanding
production environments, as maintaining a calibration board’s in-
tegrity over extended periods can be both challenging and costly.
Below, we provide a high-level summary of our auto-calibration. A
detailed step-by-step explanation is available in the supplement.

A pseudo-random dot pattern is projected at 940nm onto a surface
visible to multiple infrared (IR) cameras. Each camera captures two
images: one with the pattern and one without. By comparing these
images, the precise 2D locations of the dots are determined.
These dot locations are then used to establish correspondences

between different cameras, enabling the estimation of the cameras’
positions and orientations relative to each other. This initial estimate
is refined through a bundle-adjustment [Agarwal et al. 2023; Triggs
et al. 2000] optimization process that minimizes the error with
respect to the positional uniformity of dots across all camera views.
Optionally, the accuracy of the dot correspondences can be fur-

ther enhanced using optical flow techniques [Lucas and Kanade
1981]. Most importantly, to ensure the ongoing calibration accuracy
in a production environment, the above process can be periodically
repeated and the results compared to previous calibrations to deter-
mine any potential drift without the need for manual intervention.
Our system’s accuracy can therefore be tailored to any desired

working distance by selecting a virtual baseline between cameras.
This decoupling of accuracy from the physical hardware with cus-
tomized baselines is a core aspect of our scalable andmodular design.
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Fig. 3. Our IR-dot based automatic calibration pipeline allows us to register multiple units to each other without requiring multiple images or
calibration targets. Details are available in Section 3.3 and the supplement.

This eliminates the need for multiple hardware versions with differ-
ent physical baselines to support different working distances and
accuracy requirements. Note that this approach is used only for
estimating inter-unit transforms; intra-unit parameters are factory
calibrated using standard techniques.

4 PLENTOPIC 3D RECONSTRUCTION
In this section, we introduce our novel Deep Plenoptic Stereo (P-
Stereo) architecture and training pipeline that allows us to produce
accurate and robust 3D reconstructions.

4.1 Base Architecture
Our approach (Figure 4) extends architectures such as CREStereo
[Li et al. 2022] and RAFT [Lipson et al. 2021] by enabling two key
features:

Multi-Modal Fusion: This architecture allows the system to
incorporate information from an arbitrary number of stereo
units with RGB, IR, and polarized inputs trained fully on
synthetic data - leading to superior completeness and gener-
alization across lighting, material, and geometry.
Large Baseline Correspondence: This architecture allows for
accurate correspondence in disparity ranges of more than
1000px enabling stereo vision to show improved 3D accuracy
at longer working distances.

The architecture (Figure 4) can be described by the following steps:

(a) Input Stereo Pairs: Our architecture supports RGB, Polar-
ized, and IR stereo pairs. Since RGB and Polar images are
already pixel-level aligned (see Section 3.2), we pass them as
a single stereo pair, whereas IR is a seperate camera, therefore
we pass it in as a seperate stereo pair. We select the largest
available baseline as the reference pair because this leads to
the highest resolution cost volume.

(b) Feature Extraction: Initially, all image pairs from all modali-
ties are run independently through a shared feature extraction
backbone that outputs features at (1/16, 1/8, 1/4) resolution.

For aligned images (e.g. AOLP, DOLP, RGB), the feature maps
are summed before computing the cost volume.

(c) Cost Volume Similar to CREStereo, cost volumes are com-
puted at every image resolution (1/16, 1/8, 1/4) for each input
stereo pair. However we compute it just once directly and at
full resolution as done in RAFT rather than iteratively and
locally like in CREStereo.

(d) Cost Volume Fusion: This is a crucial step in the process of
multi-modal stereo fusion. After calculating all the cost vol-
umes, each one is warped to align with the chosen reference
cost volume. This is done by first determining the 3D location
of every element within the reference camera’s cost volume.
Using the calibration data of the other stereo pairs, we find
the corresponding 3D locations in the remaining cost vol-
umes. With this mapping established, bilinear interpolation
is used to warp all cost volumes onto the reference pair, where
they are summed together. This enables the optimization to
leverage information from every modality and baseline. For
example, the large baseline cost volume tends to be noisy
due to significant viewpoint shifts. This noise is mitigated
by fusing the small baseline cost volume while retaining the
increased accuracy of the estimated depth from the larger
baseline cost volume.

(e) Iterative Optimization: Accurate disparity estimation in
large-baseline scenarios (1000+ px disparity ranges) presents
a significant challenge due to the wide search space required
for finding correct correspondences. The multi-scale iterative
disparity estimation employed by CREStereo encounters dif-
ficulties with local minima due to its reliance on an initial
disparity and subsequent search within a confined window.
Even with multiple scales, the largest window encompasses
a mere 256 pixels in the original image. To overcome this
limitation, we propose a novel approach that incorporates
a disparity scale parameter, d, into the GRU’s cost volume
query. This parameter dynamically adjusts the sampling inter-
vals within the cost volume, enabling a coarse-to-fine search
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Fig. 5. Our synthetic data generation pipeline. (a) - Example scene generated for training our multi-baseline multimodal stereo system. The left and right
images are rendered from left cameras of Unit 1 and Unit 2, respectively, simulating the large baseline. (b) - Our polarized data augmentations realistically
model the correlation between low DOLP values and increased AOLP noise observed in real-world data, effectively closing the sim2real gap.

strategy. By initially exploring the cost volume at a coarse
interval and then using a fine interval at the last scale, we
effectively navigate the expansive disparity space. Without
this coarse-to-fine traversal, the GRUs are unable to handle
large disparity ranges.

At inference time, this architecture can run any combination of
baselines and modalities and produce accurate pointclouds.

4.2 Synthetic Data Generation
To train our multi-baseline multimodal stereo system, we generated
over 4,000 synthetic scenes. Each scene contains a random assort-
ment of objects with diverse textures and materials, including shiny
and transparent surfaces. These objects are positioned randomly
within the scene, either through gravity-based simulation or direct
placement in 3D space. Both cluttered and uncluttered scenarios are
included to enhance the model’s robustness. Two simulated stereo
units with large, random baseline are incorporated into each scene.
For every unit, we render grayscale and IR stereo images (with IR
dots), along with a Stokes vector, which is then converted into AOLP

(Angle of Linear Polarization) and DOLP (Degree of Linear Polariza-
tion) data. All rendered materials are physics-based, enabling full
Fresnel equation calculations at the surface level. Mitsuba 3 [Jakob
et al. 2022] was employed as the renderer for this synthetic data
generation process. Figure 5 showcases examples of the generated
grayscale, IR, and polarization-based synthetic data.

To bridge the gap between simulated and real-world polarization
data, we introduce physically accurate data augmentations (Figure 5)
for the AOLP and DOLP. Specifically, we randomly rotate AOLP to
simulate viewpoint changes and randomly scale DOLP, instead of
adjusting brightness or contrast.We also add noise to AOLP based on
weak DOLP signal areas and to DOLP based on its values, replacing
random noise addition. These polar augmentations enhance the
realism of the polarization data. Step-by-step augmentations and
additional details on synthetic data are available in the supplement.
To the best of our knowledge, this is the first work to utilize a

fully synthetic, physics-based rendering pipeline for polarization-
basedmultimodal stereo reconstruction tasks, aswell as polarization-
related tasks in general. To enhance the generalization of our models
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to real-world scenarios, we introduce random polarization states
to some light sources within the scenes. This reflects the fact that
real-world environments rarely adhere to the "unpolarized world"
assumption, thus improving the quality and realism of our dataset.
Training exclusively on synthetic data ensures that our model gen-
eralizes effectively to new scenes and avoids overfitting to specific
train-test scenarios. The strong generalization capabilities of our
model are demonstrated in Figure 9, where our model performs
equally well on both our testing data and the testing data from DPS-
Net [Tian et al. 2023], whereas the DPS-Net approach fails outside
its training distribution.

5 EVALUATION

5.1 Evaluation Setup
Our evaluation setup is illustrated in Figure 3(a). Two cameras are
mounted 2.5 meters above the floor to simulate the clearance for
large industrial robots, with a baseline of approximately 1 meter. A
UR5e robotic arm [Universal Robots 2024], positioned at the base of
the cell, holds the evaluation scenes, while a structured light sensor
[Photoneo 2024] mounted at the top serves as a baseline sensor.
An additional visible light projector provides gray-code patterns
for capturing the ground truth point cloud [Scharstein and Szeliski
2002, 2003].
We collected data from 115 scenes across various categories, in-

cluding large car parts, a metal bin, cluttered metal parts in a plastic
bin, cluttered textured objects, objects with reflective dark and light
surfaces, thin objects, and transparent objects. For each scene, mul-
tiple robot poses were captured under three lighting conditions:
room light, strong spotlight, and low light. Prior to data collection,
each scene was spray-painted, and a structured light point cloud
was captured to serve as ground truth data for Collision Avoidance
Metric estimation, in conjunction with the robot poses.

5.2 Auto-Calibration
To assess our single-shot, marker-free calibration pipeline, we com-
pare it to standard checkerboard target-based methods [Zhang 2000]
using OpenCV [Bradski 2000] with both 1 and 15 unique checker-
board captures in Table 1. We use a large 800 mm x 600 mm checker-
board and during the 15 captures, we move it to maximize coverage
of the working volume. We quantify the impact of each method by
computing 2D reprojection error (average difference between de-
tected corner locations and their projections) and 3D triangulation
error (difference between estimated 3D positions of triangulated
checkerboard corners and known positions of checkerboards). These
metrics are calculated on a test set of 20 checkerboard images moved
throughout the working area and provide a comprehensive evalua-
tion of the accuracy of the estimated inter-unit extrinsic transforms
and their impact on 3D reconstruction performance.

Table 1 demonstrates that incorporating a second stereo unit for
IR Autocalibration significantly enhances 3D triangulation accuracy
(1.703 mm to 0.488 mm). While multiple checkerboard patterns
remain the most accurate method (0.172 mm), they require multiple
captures and a calibrated board, presenting challenges in factory
settings. Notably, these metrics are calculated from triangulating
checkerboard corners, which allows for sub-pixel correspondence. In

Calibration # # Calib. 2D Error 3D Error
Method Captures Units Target (px) (mm)
N/A 0 1 N/A N/A 1.703
OpenCV 1 2 Checker 0.887 0.253
OpenCV 15 2 Checker 0.523 0.172
IR Auto-calib. 1 2 N/A 0.772 0.488

Table 1. Comparison of average 2D re-projection and 3D triangulation errors
for a single unit vs. checkerboard methods vs. our IR-dot auto-calibration.

real-world environments, disparity errors can be a few pixels, or 4-8x
higher than checkerboard triangulation errors, further underscoring
the need for a second stereo unit. A key advantage of this approach
compared with checkerboard-based methods is the ability to detect
calibration drift without requiring human intervention.

5.3 3D Point Cloud Evaluation
We now discuss the ability of our work to create high-quality point
clouds across different lighting, geometries, and materials. First we
demonstrate that each modality, when added to our P-Stereo archi-
tecture leads to improved robustness as defined by our collision
avoidance metrics FNR (%) and FPR (%) at a 10mm collision thresh-
old (other thresholds in supplement). We then evaluate the full
system compared to a high-resolution structured light system and
demonstrate significant improvements on challenging categories
and comparable results on less challenging categories. Finally, we
show the generalization of our P-Stereo model by showing zero-
shot generalization to the non-robotics RPS [Tian et al. 2023] polar
dataset, outperforming the state-of-the-art DPS-Net system.

5.3.1 Multi-Modal Evaluation. In Table 2, we evaluate the impact
of different modalities on FNR and FPR across different lighting
conditions and categories. In this section, we use RGB stereo as a
baseline because it represents the standard deep RGB stereomethods
commonly used in the research community.

RGB + IR: By adding the IR dots as shown in Figure 2, we see a
sharp improvement in the overall FPR & FNR, especially in Cluttered
Bin. In Figure 6, we show the value of the IR stereo in separating
foreground from background in textureless regions of an example
Cluttered Bin scene. This feature is enabled by our P-Stereo architec-
ture’s ability to fuse stereo pairs through cost volume warping.

Multi-Baseline: The addition of the second unit allows the sys-
tem to detect thin objects just mm off the floor as the effective
baseline increases from 10cm to 90cm,. In Table 2 (Thin Objects), we
see an FNR improvement from 7.7% → 4.0%. This improvement is
reflected visually in Figure 7. Across the board, this capability shows
the largest improvement in FNR (12.1% → 9.7%), and in the Large
Part category, it brings the FNR from 3.33% → 1.0%, very close to
that of structured light at 0.9. This improvement is only possible
from our multi-baseline GRU optimization and our auto calibration.

Polarization: Polarization provides the system with additional
information when RGB & IR fail. This occurs either in challenging
lighting conditions or challenging materials. In Table 2, we see
polarization reduce the FNR from 9.3% → 8.1% and 10.7% → 9.6%
in the spotlight & dark scenarios, showing the value of the additional
information. Furthermore in Table 2, we see that across the board,
there is an improvement in FNR, especially with transparent objects
where we go from 10.9% → 9.3% (see Figure 8). Even after this
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Scene RGB RGB + IR Ground Truth

FNR: 15.25 FNR: 5.94

Fig. 6. Fusing data from a separate IR stereo pair significantly improves point cloud reconstruction, particularly in areas with overlapping
objects. Our novel cost volume warping operation enables seamless integration of IR data, resulting in increased detail and accuracy compared to RGB alone.
The RGB blurs the bottom of the bin and the parts while IR shows clean separation.

Scene RGB + IR, 1 unit RGB + IR, 2 units Ground Truth

FNR: 14.46 FNR: 4.77

Fig. 7. Adding multiple units improves the ability to reconstruct thin objects. This figure shows the improvement obtained in the 3D reconstruction
when using two camera units. By adding more units, we can leverage multiple views and multiple baselines giving the model the accuracy needed to reconstruct
thin objects such as the screwdriver depicted in the scene.

Scene RGB + IR RGB + IR + Polar Ground Truth

FNR: 10.23 FNR: 7.00

Fig. 8. We see a substantial improvement in point cloud reconstruction achieved by incorporating polarization signals into our network. In this
challenging scene with low light, transparent surfaces, and complex objects (vases, cups), our architecture recovers details otherwise lost. The addition of
polarization significantly enhances reconstruction, particularly of the safety glasses and plastic cup, showcasing the network’s capability to handle real-world
complexity.

improvement however, transparent objects are still challenging and
a potential for future research. As a consequence of detecting more
objects, polarization increases FPR. Reducing FNR is more important
as preventing a collision trumps improving efficiency.
Generalization: Our system successfully generalizes polariza-

tion to new domains without training on real-world data. In Table 3
and Figure 9, we compare DPS-Net [Tian et al. 2023], the previous

state-of-the-art for polarized stereo to our system on both their
RPS dataset and our robotics dataset. Our system shows superior
zero-shot generalization when both are trained only on synthetic
data for both the RPS testing data (epe 3.4 → 2.0) and our testing
data (FNR 27.52 → 14.21).
With real training data from the RPS dataset, DPSNet achieves

improved epe (3.4 → 0.6), however this is clearly overfitting, as

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.



A Plenoptic 3D Vision System • 9

Scene DPS-Net Synth DPS-Net Real

O
ur

 D
at

as
et

R
P

S
 D

at
as

et

Ground TruthOurs (Single Unit, RGB + Polar)

Fig. 9. Our synthetically trained network generalizes well to non-robotics polarization data. DPS-Net, despite real data training, suffers from
hallucination, notably missing bin walls in our data and blurring trees in the RPS dataset. Note the limited quality of RPS ground truth.

Vision System Select Categories Lighting Conditions Full Dataset
Large Part Cluttered Bin Thin Objects Transparent Roomlight Spotlight Dark

Method Modality Units FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR
Structured Light 1 0.1 0.9 0.4 13.5 1.0 8.7 0.4 18.8 0.8 22.3 0.7 23.3 0.9 19.3 0.8 21.6

Ours RGB 1 2.5 3.1 2.1 13.3 1.6 8.6 2.2 13.6 2.1 13.2 2.1 13.3 3.2 17.4 2.5 14.6
Ours RGB + IR 1 2.4 3.3 ↓ 0.5 ↓ 7.0 1.2 7.7 1.4 ↓ 10.1 1.4 ↓ 11.4 1.2 ↓ 11.4 1.7 ↓ 13.5 1.4 ↓ 12.1
Ours RGB + IR 2 ↓ 1.5 ↓ 1.0 0.2 ↓ 5.1 0.9 ↓ 4.0 3.2 10.9 0.9 ↓ 9.2 1.1 ↓ 9.3 1.3 ↓ 10.7 1.1 ↓ 9.7
Ours
(Final) RGB + IR + Polar 2 2.8 ↓ 0.6 0.4 ↓ 4.6 1.7 ↓ 3.1 3.7 ↓ 9.3 1.8 ↓ 8.6 2.1 ↓ 8.1 2.2 ↓ 9.6 2.0 ↓ 8.8

Table 2. Evaluation on our dataset across modalities, lighting conditions, and categories. Our final multi-modal approach shows a sharp reduction in
FNR when compared to the structured light system. All of our approaches show highest error in dark scenes while the structured light system shows the best
results in dark scenes. The largest improvement comes from adding a second unit. The improvement from polarization is most substantial in challenging
lighting conditions such as spotlight & roomlight, and for transparent objects. We use a ↓ to denote a significant improvement FNR or FPR.

System Training Training Testing Dataset
Dataset Domain RPS (epe) Ours (FNR)

DPS-Net IPS Synth 3.6px 27.52
IPS + RPS Synth + Real 0.6px 55.77

Ours Ours Synth 2.0px 14.21
Table 3. Comparison with DPS-Net polar stereo [Tian et al. 2023].
Trained purely on our synthetic data, our system demonstrates zero-shot
generalization to the non-robotics RPS polar dataset [Tian et al. 2023], out-
performing DPS-Net trained only on synthetic data. While adding real RPS
data improves performance on the RPS testing data, it leads to overfitting
and very poor results on our testing data (see Figure 9).

the generalization to our real test set is signficantly worse than
the synthetic only model (FNR 27.52 → 55.77). This is due to the
difficulty of producing accurate depth labels and the limited avail-
ability of real polarized data. For example, the RPS ground truth
data was collected using a low-resolution sensor, resulting in blurry
and sparse depth information (see Figure 9).
In contrast, our P-Stereo model combined with our realistic syn-

thetic polarized training data consistently outperforms DPS-Net in
generalization across both our dataset and the RPS dataset. This
demonstrates our approach’s robust polarized stereo vision.
Ablations We investigated the impact of data augmentations

and architectural choices through ablation studies. The results in

Table 4 demonstrate that incorporating polarized data augmenta-
tions substantially improves sim2real transfer, reducing FNR by 2x.
Notably, the effectiveness of these augmentations is amplified when
polarization information is included in both the cost volume and
the context map (the features used to initialize the GRU; see [Lipson
et al. 2021], Figure 4). Excluding polarization from the context map
leads to a degradation in performance.

5.3.2 Structured Light Evaluation. Themainmotivation of our work
was to answer whether one can build a stereo vision system that can
produce competitive point clouds to high resolution structured light
systems in the context of industrial robotics, specifically collision
avoidance. For this we start by discussing the ideal case for struc-
tured light, then discuss key improvements in challenging cases
such as occlusion, ambient light, and adversarial materials.

Ideal Case: The ideal case for structured light is a large, flat, dif-
fuse object that allows for high-quality 3D scanning with minimal
occlusions. This is shown in Figure 10 (e), and Table 2(Large Part).
In this scenario, traditional stereo struggles to achieve good per-
formance, however with the addition of RGB, IR dots, and multiple
units, we show improved FNR compared to structured light (0.6%
vs 0.9%) with worse, but still reasonable FPR.

Occlusions Structured light systems struggle to reconstruct oc-
cluded areas, like bin walls here, when they are visible only to either
the camera or the projector, but not both. Our multi-modal stereo
approach overcomes this limitation by requiring the information to
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(a) Dark Reflective Scene (b) Metal Bin with Objects (c) Plastic Bin with Clutter (d) Transparent Objects (e) Large Car Part

FNR: 27.24        FPR: 0.01       

FNR: 0.87        FPR: 1.59       

FNR: 46.32 FPR: 2.92

FNR: 7.27 FPR: 0.54

FNR: 12.51 FPR: 0.45

FNR: 3.60 FPR: 0.31

FNR: 15.76 FPR: 0.18

FNR: 5.31 FPR: 0.11

FNR: 0.10 FPR: 0.00

FNR: 0.02 FPR: 0.45

Fig. 10. Our multi-modal, multi-view vision system excels in challenging scenarios, providing more complete point clouds of occluded regions
and materials that confound traditional structured light methods. In (a) and (d), our system successfully reconstructs dark, shiny, and transparent
objects, while (b) and (c) demonstrate superior reconstruction of bin walls. Even in ideal structured light conditions (e), our system remains competitive,
producing a slightly less sharp but still accurate reconstruction. All scenes are around 2 meters away from the system. All FNR / FPR numbers shown above
are for the specific scene, while Table 2 shows averages across categories.

be present in just one of the multiple cost volumes being combined.
This results in a significant improvement in the reconstruction of
these occluded areas, which is clearly seen in our results. In Table 2
(Cluttered Bin), we reduce FNR dramatically (13.5% → 4.6%) and in
Figure 10 (b, c) we show superior reconstruction.
Challenging Materials Challenging materials prevent the pro-

jector pattern from being accurately registered in the captured im-
ages, leading to large false negative regions. From Figure 10 (a,
d) and Table 2 (Transparent), we see that in these cases, the addi-
tional modalities and viewpoints available in our system allow us
to achieve superior reconstructions (FNR 18.8% → 9.3%). In some
cases, when transparent objects are not properly reconstructed, it
can lead to potential collisions in operation.
Ambient Lighting Ambient lighting negatively impacts struc-

tured light systems, causing gaps in the resulting 3D pointcloud
data, as demonstrated in Table 2(Dark vs Spotlight). Our system,
however, is more robust to varying lighting conditions thanks to
HDR capture (Figure 2) and its ability to function without relying
solely on pattern projection.

Overall, our system shows a large improvement in FNRs (21.6% →
8.8%), with competitive FPRs when compared to structured light.

6 CONCLUSIONS
In this paper, we have presented a novel plenoptic multi-camera,
multi-modal, multi-baseline stereo vision system designed to ad-
dress the challenges of collision avoidance in demanding industrial
robotic automation applications. By combining stereo vision with

Polar in
Cost Volume

Polar in
Context Map

Polar
Augs

RGB
Augs FNR FPR

✓ 9.9 4.5
✓ ✓ 11.9 4.9
✓ ✓ 9.9 2.0
✓ ✓ ✓ 8.8 2.0

Table 4. Data augmentation choices are crucial for effective polar-
ized sim2real transfer. Incorporating physically accurate polarization
augmentations into our synthetic data generation pipeline leads to a sub-
stantial 2x improvement in the FPR metric. We see further improvement
from integrating polarization in the context map.

polarization, infrared sensing, and a unique self-calibration mecha-
nism, our system demonstrates robustness to challenging lighting,
materials, and geometries that often hinder traditional structured
light methods. We acknowledge that some challenges remain for
future work. For example, addressing adversarial materials (trans-
parent, anisotropic) in varying lighting conditions poses challenges
for robust collision avoidance.

While our work primarily focuses on collision avoidance, our sys-
tem’s high-resolution multi-modal data opens promising avenues
for future research in other robotic vision tasks, such as pose esti-
mation, grasp estimation, reinforcement learning, and more. This
potential for broader impact underscores the value of our approach
as a step towards a camera-only system for industrial robotics.
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